- (3a-2 - 3b2)·(5c3 - 6cos(π/2)3) =
- (7x-1 + 8cos(0))·(b2 - x-2) =
- (8c2 + 8c)·(8cos(π/2)-2 + 8cos(π/2)) =
- (5cos(2π/3)-2 + 7cos(π)-2)·(5cos(2π/3)-2 - 7cos(π)-2) =
- (3cos(π/2)2 + 8b-2)·(x-1 + 7b3) =
- (6a-1 + 6cos(2π/3)3)·(7cos(0)2 - 8a2) =
- (a - b2)·(a + b2) =
- (7cos(π) - 3b3)·(b-1 + x) =
- (7cos(π/2)-1 + 7c-1)·(5cos(π/2)2 - 6x-1) =
- (5a-2 + a3)·(5x2 + 6cos(0)) =
- (8b2 - 6a3)·(8b2 + 6a3) =
- (6c-2 - 8cos(π/2)-2)2 =
- (6b-1 - 8x-1)·(6b-1 + 8x-1) =
- (5a-1 + 3b)2 =
- (5a-1 + 6b-2)·(5a-1 - 6b-2) =
- (6a - 7c3)·(7a - 6c-1) =
- (6cos(0)3 - 6x2)·(8cos(π/2)-2 + 3a) =
- (b3 + 3cos(π/2)-2)2 =
- (7b2 + 7x3)·(c + 5a-1) =
- (3x3 + 5c)·(3x3 - 5c) =
- (6x-2 + 8c-1)2 =
- (c2 - 3x2)·(7b-1 + 6a2) =
- (3b-2 + 8x3)·(3b-2 - 8x3) =
- (3b2 - 8c2)·(5a3 + 7a3) =
- (x + 8a2)·(x - 8a2) =