- (5x-1 + 6cos(π/2))·(5x-1 - 6cos(π/2)) =
- (8c3 + 6a2)2 =
- (cos(π)2 - c2)·(a3 + 5b3) =
- (b-1 - 7cos(0))·(5b + 7a-2) =
- (3c-2 + 5cos(2π/3)-2)2 =
- (b-1 - b-1)·(6b2 - 3a3) =
- (7b2 - 7c)·(7b2 + 7c) =
- (3c - 7c-2)·(3c + 7c-2) =
- (3x2 + 3c3)·(7b-2 + a2) =
- (5b-2 - 5x)2 =
- (cos(2π/3)3 + 5c)·(3a2 + 7x3) =
- (7b-2 + 7x2)·(5b2 - 6cos(π/2)) =
- (8a + 3c3)2 =
- (8x3 - 5cos(0)2)·(c-1 + 3cos(π/2)-1) =
- (7a + 5cos(π/2)-2)·(8c-2 - b-1) =
- (b - 5a)2 =
- (cos(π)-1 + x2)·(cos(π)-1 - x2) =
- (8b-1 + 8a2)·(3c - 5c-1) =
- (3c - 6c3)2 =
- (cos(π)-2 + 5c)·(8c-2 - 3c2) =
- (7x-1 - 8c-2)·(7x-1 + 8c-2) =
- (5x2 - 6x3)·(8cos(0)-1 - 8cos(π)3) =
- (5c-1 + 7x-2)2 =
- (5cos(2π/3)2 + 3cos(0))2 =
- (3x3 + 6a-2)·(3x-1 - b-2) =