• (8x-2 - 6cos(π))·(8cos(π/2)3 + a2) =
  • (6c2 + 3b-1)·(7c-2 - 7b2) =
  • (5a3 + 5cos(2π/3)-2)2 =
  • (8x-1 - x3)·(5x - a-2) =
  • (8x + 8a3)2 =
  • (6x + 6x2)2 =
  • (c-2 - 7cos(0)-2)·(3c - 6x-1) =
  • (6c - 3c2)·(5a3 + 6c-2) =
  • (6b3 + 7x3)2 =
  • (6x3 - 8b-1)·(a-1 + c) =
  • (7c + 3b3)·(7c - 3b3) =
  • (6a3 - c2)·(7c3 - 5x-2) =
  • (3b2 + 8c-2)·(3b2 - 8c-2) =
  • (5a-2 - 8a)·(8a-2 + c-2) =
  • (3b-2 - 6c)·(8cos(π/2)-2 + 6x-2) =
  • (8x-1 - 5cos(2π/3)-1)·(3x-1 + x-1) =
  • (c2 - 3c-1)·(c2 + 3c-1) =
  • (5x3 + 3cos(π/2))·(8x-1 + 3cos(0)2) =
  • (7cos(0)-1 - 7b2)·(6cos(2π/3)3 + 7x) =
  • (7cos(2π/3) + a3)2 =
  • (3x2 - 7a3)·(cos(π) - a2) =
  • (7c-1 + 6b-1)2 =
  • (5cos(π/2) - 6a3)2 =
  • (8a + 8cos(0))·(8a - 8cos(0)) =
  • (5b3 - a2)2 =