• (8cos(π)3 - 3cos(π/2)3)·(8cos(π)3 + 3cos(π/2)3) =
  • (c-2 + 8b3)2 =
  • (6cos(π)-2 + c2)2 =
  • (6c-2 + cos(2π/3)-1)2 =
  • (7x-2 + b2)2 =
  • (5b2 - c-2)2 =
  • (5c + 5cos(π/2))·(6c + 3a2) =
  • (3cos(0) + 5x-1)·(3cos(0) - 5x-1) =
  • (x3 - 6a-2)2 =
  • (6b2 - 6b-2)·(7a2 - 3cos(π/2)-2) =
  • (cos(π)-1 + 3cos(2π/3)3)·(x-2 + c3) =
  • (5x-1 + 7a-1)2 =
  • (3cos(2π/3)-1 + 8cos(0)-2)·(5c2 + 5c2) =
  • (7a-1 + 6c)2 =
  • (6b2 + 8c2)·(5cos(2π/3)3 - 5x-2) =
  • (7a-2 + 6x2)2 =
  • (5cos(2π/3)3 - 3c3)2 =
  • (6c + a-1)·(cos(0)2 - cos(π)-1) =
  • (3cos(π)-2 + 6b-2)·(3cos(π)-1 - a3) =
  • (8a-2 - cos(π)3)·(8a-2 + cos(π)3) =
  • (8b3 + 5c3)·(8b3 - 5c3) =
  • (7cos(0) - x3)·(8cos(π)3 - 7a-1) =
  • (5c2 - 7x3)·(7x - 8a-1) =
  • (c2 + 8cos(π/2)3)·(c2 - 8cos(π/2)3) =
  • (6x-1 + 7b2)2 =