• (7cos(π)-2 - 6x3)·(7cos(π)-2 + 6x3) =
  • (5cos(2π/3)3 - 3a2)·(5cos(2π/3)3 + 3a2) =
  • (3cos(0)3 + a3)·(8a - cos(2π/3)) =
  • (7c3 + 8cos(2π/3)3)·(7c3 - 8cos(2π/3)3) =
  • (7cos(0)2 - 3c2)·(6b2 - 7cos(π/2)-1) =
  • (3c3 - 6cos(π/2)3)·(6x-2 - c-1) =
  • (8cos(0) - b2)·(8cos(0) + b2) =
  • (5c2 - 3x)·(7b + 3b-1) =
  • (6cos(0)-2 - 8x)·(7b3 + 3cos(0)2) =
  • (5a-2 + 6x)2 =
  • (3b-2 - 8x-2)2 =
  • (8cos(0)2 + 5b3)·(8cos(0)2 - 5b3) =
  • (7cos(2π/3)-2 + 5x3)·(6b-2 - 5cos(π)3) =
  • (3b3 - 6a)2 =
  • (cos(0)-1 + 3cos(2π/3)2)·(cos(0)-1 - 3cos(2π/3)2) =
  • (8cos(π) - b-2)·(5c-1 - 8x) =
  • (5cos(π/2)-1 - 7cos(0)-2)2 =
  • (8x2 + 5a-2)·(8x2 - 5a-2) =
  • (3x3 - x3)·(5cos(π)2 - 3b-2) =
  • (7x2 - 6c)·(7x2 + 6c) =
  • (6x-2 - 3cos(π)2)·(x + 7x3) =
  • (7x3 - 7b3)·(7x3 + 7b3) =
  • (8cos(0)-1 + 5b2)·(5b-2 + 5x-1) =
  • (6c-2 + 8a3)·(8x + 8c-2) =
  • (7b-1 + 6b-1)2 =