• (cos(π/2)2 - b2)2 =
  • (8cos(π)3 + 3b2)·(8cos(π)3 - 3b2) =
  • (6a2 - 6c-1)·(5x2 - 6a-2) =
  • (c-1 + 6x-1)2 =
  • (x3 + 8a2)·(cos(2π/3)2 + 7cos(2π/3)3) =
  • (3cos(π)2 + 6x2)·(6c2 + 5a3) =
  • (5cos(2π/3)2 - x)2 =
  • (3b3 + 3x)·(7c-1 + 6c2) =
  • (3a2 + 5a3)·(3a2 - 5a3) =
  • (7a3 + 8cos(2π/3)2)2 =
  • (6cos(π)2 - x2)·(6cos(π)2 + x2) =
  • (3a2 - 7c3)2 =
  • (6cos(2π/3)-1 - 7cos(2π/3)3)2 =
  • (5c-1 - x-1)·(3b-2 + 5b) =
  • (6b3 + 5a-1)2 =
  • (8c - 7b-1)·(8c + 7b-1) =
  • (8c3 - 7a)·(7x-1 - 6cos(2π/3)) =
  • (8c-2 - 8b3)2 =
  • (c - 5cos(π)2)·(5b-1 - 6b) =
  • (8cos(0)2 - 6cos(π)-1)·(5c-2 - 8cos(π)-2) =
  • (cos(π)-1 + 3b-1)·(6a-2 + 3b) =
  • (5x-1 - a2)2 =
  • (a-1 + 8x3)2 =
  • (3cos(0)3 + 7cos(π))·(3cos(0)3 - 7cos(π)) =
  • (7x2 + 8c3)·(5b2 - b3) =