• (3b3 - 8b3)2 =
  • (6b - 3c)·(6b + 3c) =
  • (6x-2 - 3x2)·(6x-2 + 3x2) =
  • (x3 - 8b2)·(cos(π/2)-1 + 8cos(π/2)-2) =
  • (8a3 + 6a-2)·(6a-2 + 5a3) =
  • (8x2 + a2)·(8x2 - a2) =
  • (6b2 + 7cos(π/2))·(5a3 - 8c) =
  • (7cos(π)2 - 5c2)2 =
  • (8c + 7a-1)·(5x-2 + 3b3) =
  • (5c-2 - x-1)2 =
  • (6a-2 - a3)·(cos(2π/3) + 7x) =
  • (6cos(0)3 + cos(0)3)·(3a + 6x) =
  • (6c-2 + 5x-1)·(5c-1 + 6cos(0)-1) =
  • (3x-2 - 7b2)·(3x-2 + 7b2) =
  • (8a2 + 3b)·(8a-1 + 5c3) =
  • (5x2 - 8x)·(a-1 - 7cos(π/2)-2) =
  • (6x2 + b-1)·(6x2 - b-1) =
  • (5cos(2π/3)3 + 6cos(2π/3))·(8x3 - 8c) =
  • (3x2 + x-1)·(6cos(0)3 + 6b-2) =
  • (6b-2 + 5cos(π)-2)·(6b-2 - 5cos(π)-2) =
  • (3x3 + 6x-2)2 =
  • (8a3 - 5cos(π/2)-1)·(8a3 + 5cos(π/2)-1) =
  • (5b-2 - 5b-2)·(7b-1 - 7c) =
  • (a-1 + 6x-2)2 =
  • (6cos(2π/3) + b3)·(8b3 - 6b-1) =