- (3b3 - 8b)2 =
- (3x2 + 6x-1)·(6c3 + 5c-2) =
- (6b2 + 7a2)·(c2 + 8c) =
- (7x3 - 5b-1)·(5c - 6x-2) =
- (8c-1 + 8b)·(c-2 - 8cos(π)) =
- (5cos(2π/3)-1 + 5a3)·(8c-1 - 7x-1) =
- (6a2 + cos(π/2))·(6a2 - cos(π/2)) =
- (6b-1 + 3a2)·(3c + 7c2) =
- (7c3 - 3c3)·(6c-1 - 5b-2) =
- (3x-1 + 5x2)·(cos(2π/3)3 - 3x-2) =
- (8c-1 - 8x)·(x2 - 8cos(0)3) =
- (7cos(0)-1 + 5x-2)·(7a2 - a-1) =
- (8c-1 - cos(2π/3))·(8c-1 + cos(2π/3)) =
- (7b - 5b2)·(7b + 5b2) =
- (8x-2 + 5cos(2π/3))·(8x-2 - 5cos(2π/3)) =
- (8c-2 - 8a-1)2 =
- (c3 + 8a)2 =
- (6x2 - 3a3)·(6x2 + 3a3) =
- (7a3 + 5x-1)·(7a3 - 5x-1) =
- (7c3 + b-1)·(7cos(2π/3)-2 - 6c-1) =
- (c2 + 6b3)·(c2 - 6b3) =
- (x3 - 8a-1)·(x3 - 7a-2) =
- (5cos(0)-1 + c-1)·(6c-2 - 5c) =
- (6a2 - 8c)·(6a2 + 8c) =
- (5cos(2π/3)-2 + x2)·(6b-2 + 3b) =