- (cos(2π/3) - 3b-2)·(7b-1 - 8a-2) =
- (3b - 5x3)·(3b + 5x3) =
- (8b - 8a-1)2 =
- (6cos(2π/3) - 3cos(2π/3))·(8x3 - 3cos(0)) =
- (8x-1 - 6a-1)·(6b3 + 7b-1) =
- (7a2 + 6b3)·(7a2 - 6b3) =
- (3cos(π/2)-2 - 8x)·(3x-2 - 5b-2) =
- (5a-1 + 3a-2)2 =
- (6cos(π)-1 + 7c-1)·(5c-2 - x2) =
- (7c-1 - 7c)·(3a3 + 6cos(0)2) =
- (7a3 - c3)·(7a3 + c3) =
- (a-1 - c-1)·(a-1 + c-1) =
- (7b2 + 5cos(2π/3)2)2 =
- (5cos(π/2)2 + 8a2)·(8cos(2π/3)2 - 3cos(0)2) =
- (3cos(π/2) + 6b2)2 =
- (5b-1 + 8c)·(7cos(π)-2 + 5c-1) =
- (8c-2 + 5a-1)2 =
- (b - 5x)2 =
- (8c-2 - 6x2)·(6c-1 - 7b2) =
- (8a2 + 8b)·(6a - 6b-2) =
- (3b3 - 3cos(2π/3)-1)·(a2 - 7x-1) =
- (8c + x3)2 =
- (3b2 - 7b2)·(7cos(2π/3)2 - 8x3) =
- (6a-1 - 3a-1)·(6a-1 + 3a-1) =
- (7x3 - 6cos(0)3)·(7a + 5b-1) =