• (a2 + 7b2)·(c-2 + 5c-2) =
  • (x2 + 3b)·(5x-2 + 3cos(π)-2) =
  • (8x-2 + 6b-2)·(8x-2 - 6b-2) =
  • (b3 + 3a2)2 =
  • (8b-1 + cos(0))·(8b-1 - cos(0)) =
  • (cos(π)3 + 7c3)·(cos(π)3 - 7c3) =
  • (6c2 + 3b3)·(3a-2 + 8x-2) =
  • (7cos(0) + 7cos(0)-1)·(7cos(0) - 7cos(0)-1) =
  • (6cos(2π/3)-1 - 6b2)2 =
  • (5c3 - 3b)·(5c3 + 3b) =
  • (8cos(π/2) + 3cos(π)2)·(7x-1 - a) =
  • (8c2 - 3cos(0))·(3c2 - 7x2) =
  • (8b-1 + 6cos(π/2)-2)·(7c2 - 8a) =
  • (b2 - 3b-2)·(8c3 - x-1) =
  • (8cos(π)3 - 8cos(π/2)-1)·(3x-1 + cos(π/2)2) =
  • (c + 5b)2 =
  • (6x-1 + x3)·(3x-2 - 6b2) =
  • (7b2 + 5a2)2 =
  • (7cos(π/2) - 3a3)·(7cos(π/2) + 3a3) =
  • (3cos(π) - 7x)·(6c-1 + 6a2) =
  • (5cos(π/2)-1 + c)·(5cos(π/2)-1 - c) =
  • (3b-2 - 6c-2)·(6x + 7c-2) =
  • (7a2 + 8x2)·(5c-2 - 8c3) =
  • (8x2 + 8x-2)·(8x2 - 8x-2) =
  • (3x-1 - 5c)·(6c3 + 5a2) =