• (3c2 - 6b3)·(6c3 - 3x-1) =
  • (8b-2 + 7x2)·(8b-2 - 7x2) =
  • (7b - 5c-1)·(7b3 - 7a-1) =
  • (3c - 3cos(π)-1)·(3cos(0)2 - 3c2) =
  • (3c3 + c)·(6cos(2π/3)2 + 3cos(0)-2) =
  • (7a-1 + 5x2)2 =
  • (cos(2π/3) + 3c3)·(cos(2π/3) - 3c3) =
  • (7b-1 - 5cos(π/2)-2)·(7b-1 + 5cos(π/2)-2) =
  • (3a-1 - 5a2)·(c - a-2) =
  • (5x-2 + 3b-1)·(5x-2 - 3b-1) =
  • (3a3 + 5a2)2 =
  • (6cos(2π/3)-2 - 6c-2)2 =
  • (8cos(π)-2 - 8x2)·(8cos(π)-2 + 8x2) =
  • (3cos(0) + 3cos(π/2)3)2 =
  • (5x-2 + 5b)·(5x-2 - 5b) =
  • (6a3 - 3cos(2π/3))2 =
  • (a3 - 8c)·(8cos(π)-2 - 7b) =
  • (c - b)2 =
  • (8b2 - 6b-1)·(8b2 + 6b-1) =
  • (5x + 8cos(π)-2)·(8cos(π/2)2 - 5a3) =
  • (3a - 7x3)2 =
  • (5x2 + 7cos(π)-2)·(3b-1 - 7a-1) =
  • (8c2 - 5x3)·(x2 - 3x) =
  • (7x3 - 6x2)·(7x3 + 6x2) =
  • (6c-2 - 5cos(π/2)2)2 =