• (3c2 - 6x2)·(3c2 + 6x2) =
  • (6cos(2π/3)3 + b2)·(3b-2 - 6c2) =
  • (7a-1 - 6x-2)·(7a-1 + 6x-2) =
  • (3x3 + 7x)2 =
  • (5b3 - b-2)2 =
  • (8c-1 + 3x3)·(8c2 + 3x-2) =
  • (c2 + 8a2)·(c2 - 8a2) =
  • (7a-2 + 6a)·(7a-2 - 6a) =
  • (7b + 8b-1)·(7b - 8b-1) =
  • (5cos(π/2)2 - 5c2)·(5cos(π/2)2 + 5c2) =
  • (3c-2 - 3x2)·(3c-2 + 3x2) =
  • (7c-2 + 6x3)2 =
  • (3cos(π/2) - 7cos(π)-2)·(3cos(π/2) + 7cos(π)-2) =
  • (c3 + 6x-2)2 =
  • (3c2 + 3x2)·(3c2 - 3x2) =
  • (3x-2 + a-1)·(3x-2 - a-1) =
  • (cos(2π/3)-2 + 6a3)2 =
  • (5x-1 + 8x)·(a-2 + c2) =
  • (7cos(π/2)-2 + 3b)2 =
  • (5x + 3cos(0))·(5x - 3cos(0)) =
  • (7a2 + 6c2)·(3x2 + 8b3) =
  • (6a3 - 5c2)·(6a3 + 5c2) =
  • (5a-1 - 5b-2)·(b-2 + 5c-2) =
  • (7a2 - 5x2)·(7a2 + 5x2) =
  • (6a-2 - a)2 =