• (8cos(2π/3)-1 + 5a-1)2 =
  • (7cos(0)-2 + 3b-2)·(7cos(0)-2 - 3b-2) =
  • (b-2 + 8cos(π)-2)·(b-2 - 8cos(π)-2) =
  • (x-1 + 7c2)·(5cos(2π/3) + 6x3) =
  • (5a3 + 8c3)2 =
  • (8a3 + 7x-1)·(8a3 - 7x-1) =
  • (6c-1 - 8a)·(6cos(π)2 + 3x-1) =
  • (6x-1 - c-1)·(6x-1 + c-1) =
  • (3x2 - 5x2)·(3x2 + 5x2) =
  • (3c3 - b2)·(3c3 + b2) =
  • (3b3 - 5a3)·(3c-1 + 6a-2) =
  • (7cos(π)-2 - a)·(7cos(π)-2 + a) =
  • (5c - 3b)2 =
  • (6c-1 + 5cos(0)3)2 =
  • (7b-2 + 6b2)2 =
  • (7b-2 + 6b3)·(3c-2 - 7x3) =
  • (6x-2 + 6a-2)·(7x3 - b-2) =
  • (5cos(π)-1 + 8x-2)·(5cos(π)-1 - 8x-2) =
  • (6b-1 + 8c)2 =
  • (5cos(π/2)2 - 7a2)·(3x2 + 6x3) =
  • (5a + 7cos(π/2))2 =
  • (3a-1 + 7c)·(3a-1 - 7c) =
  • (7b-2 + 5x-1)·(8c-1 + 5cos(2π/3)) =
  • (3x3 - 8cos(0)3)·(3x3 + 8cos(0)3) =
  • (8b-2 + 8x3)2 =