- (8a3 - 7a-1)·(8a3 + 7a-1) =
- (3a + 7b2)·(7c3 - cos(2π/3)-2) =
- (3cos(2π/3)2 - cos(2π/3))2 =
- (cos(0)-1 - 7b)2 =
- (6a3 + b)·(6a3 - b) =
- (6a3 - 5x-1)·(7a-2 - c2) =
- (6x + 7a-2)·(6x2 - 8x3) =
- (cos(2π/3)2 - 5x-1)·(c3 - 3c3) =
- (7cos(π)3 - 7cos(π/2)3)·(3x-1 - cos(2π/3)3) =
- (7b-1 + 5a2)·(3x3 + 3a3) =
- (8c + c)2 =
- (8a3 - 8b-2)·(8a3 + 8b-2) =
- (8cos(0)3 + 5a3)2 =
- (8c-1 - 8cos(π/2))·(8c-1 + 8cos(π/2)) =
- (3c-2 - 5b3)·(3c-2 + 5b3) =
- (cos(π) + 7b)2 =
- (b3 + c)·(7b-1 - 8cos(2π/3)3) =
- (cos(2π/3)2 - 3cos(2π/3))·(7x-2 + 8x-2) =
- (5a3 + 5b2)2 =
- (5x + 5x)·(5cos(π/2) + 8b) =
- (8cos(π)3 + 8a)·(8cos(π)3 - 8a) =
- (7x + 7a-2)2 =
- (5x + 5x2)·(a-2 - b) =
- (8a3 - b3)·(8a3 + b3) =
- (3c - x)2 =