• (5b2 + 5c-1)·(8a2 - 8cos(π)-2) =
  • (7c2 - 7c-2)·(7c2 + 7c-2) =
  • (3cos(π) - 5c2)2 =
  • (8a3 + b3)·(7cos(π)3 + 3a) =
  • (7a - 3x)·(7a + 3x) =
  • (3cos(2π/3)3 + 3a-1)·(c3 - 3a) =
  • (3x + 5x)2 =
  • (3a3 + 3a-1)·(c + 7b2) =
  • (c - 8cos(π)2)·(c + 8cos(π)2) =
  • (5c3 - 5b-2)·(3cos(2π/3) + 5b-2) =
  • (3a + 8c2)·(3a - 8c2) =
  • (a2 - 6a3)·(6a2 - 5a3) =
  • (cos(0) + x)2 =
  • (8cos(2π/3)3 - cos(π/2)2)2 =
  • (5cos(0)3 - 7x-2)·(8a + 6x-2) =
  • (5cos(π)3 - 8c3)·(5cos(π)3 + 8c3) =
  • (5b-2 - 3cos(π/2)3)·(3b-2 + cos(π/2)-2) =
  • (6c + 7cos(π/2)3)·(8a-1 - 8b2) =
  • (5c3 + 3a-1)·(3cos(π)-1 + cos(0)-1) =
  • (6cos(0) - 6x)·(3cos(0)-1 - 7cos(2π/3)-2) =
  • (7b-1 - 8b2)·(7b-1 + 8b2) =
  • (6b2 + 5b-2)·(c-1 - 3c-2) =
  • (3a-1 + 3b-2)2 =
  • (6c - 5a-1)·(6a2 + a-1) =
  • (8b-1 - 7x2)2 =